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The authors developed an approximate-boundary-condition method for time-domain

aeroelastic simulations on stationary body-conforming grids (AIAA 2004-0885).

This

method is extended to three dimensions in this paper. The CFD solver with the approx-
imate boundary conditions is coupled with elastic equations to predict the aeroelastic
properties of wings. The accurate nonlinear Euler equations are solved in the field, while
the movement of the solid surfaces is accounted for in the approximate boundary condi-
tions without moving or deforming the computational grids. The first-order approximate
wall-boundary conditions are used in solving the full Euler equations. Results are com-
pared with Euler solutions with the full boundary conditions on moving grids and known

experimental data.

I Introduction

In recent years, high level computational fluid dy-
namics methods are successfully used to predict flutter
for complex configurations.! However, development of
efficient and robust schemes for grid deformation is still
a challenge and difficulty for computational aeroelas-
tic (CAE), especially for time-domain simulation us-
ing Euler or Reynolds-Averaged Navier-Stokes(RANS)
equations(see Ref. 1 for a review). For most Eu-
ler or RANS solvers used in CAE, the full surface
boundary condition is implemented and the physical
motion of the boundary is captured directly in equa-
tion of motion. This kind of treatment is accurate
but it introduces a major complication to the analy-
sis. Efficiently moving millions of computation grid
points thousands of times in an aeroelastic computa-
tion process have to be accomplished. Furthermore,
degradation of grid quality and grid crossing may de-
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crease computation accuracy or terminate the compu-
tation. In this aspect, the TSD(Transonic Small Dis-
turbance ) method eliminates the physical deformation
by assuming small perturbation. For TSD potential
method, for example,the NASA Langley CAP-TSD
code,>* the movement of the wall surface is accounted
for in the boundary condition so that the computa-
tional grid is always stationary. In an effort to take
advantage of a stationary grid while eliminating the
limitations of the small-perturbation potential model,
Gao, Luo, Liu, and Schuster® ® presented an unsteady
Euler method using stationary Cartesian grid for thin
airfoils. Recently Yang, Liu, Luo, and Schuster” im-
plemented this concept on stationary body-conforming
curvilinear grids in order to improve the Cartesian
grid method, especially to remove the limitation of
thin airfoil assumption and the singularity for blunt
leading edge which occurs on Cartesian grid.%% In
Ref. 7, the method was successfully used to sim-
ulate the steady, unsteady and aeroelastic cases for
airfoils. In this paper, this method is extended to
three-dimensional cases and used in the unsteady com-
putation and flutter analysis of wings. During the
unsteady computation process, the full boundary con-
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ditions for the Euler equations on the moving wings are
replaced by approximate boundary conditions on the
stationary grid around the undeformed wing surface at
its mean position by using Taylor expansions. Since
the deformation or displacement of the wing surface
from its mean position is usually small in an aeroe-
lastic problem, in particular, flutter simulations, we
anticipate small errors by using such a simulation on
a stationary grid, which can simply be the same grid
used in the steady aerodynamic calculations.

The formulation of the proposed approximate
boundary conditions is presented first. They are
implemented in a three-dimensional body-fitted grid
code, PARCAE(PARallel Computation of AeroElas-
ticity)® developed at UCIL Numerical examples for un-
steady and aeroelastic cases are given and results are
compared with those obtained by the original PAR-
CAE with full boundary conditions and the published
experimental data.

IT Governing Equations
The three-dimensional unsteady Euler equations in
conservative integral form in the Cartesian coordinate
system (z,y,2) are

g/WdV+/G-ndS:O )
where
p
U
W= | p (2)
pw
pE
pld—ap)
pu(q — qp) + pe,
G= pv(q — qp) + pey 3)
pw(q — qp) + pe:
pPE(q — aqp) + p(ue, + vey + we,)
q = ue, + vey + we, (4)
dp = Upeg + Vpey + Whe, (5)
1 p 1 5 2 2
E=—24-
’y—1p+2( +v° 4+ w?) (6)
H=E+ % (7)

Following the procedure by Liu and Jameson,? a

cell-centered finite volume method and Runge-Kutta

P(x,y,z)

Fig. 1 Description of the movement of the wing.

multi-step scheme are used for the space discretiza-
tion and time marching separately. Scalar and matrix
artificial dissipation schemes are used to prevent os-
cillations near stagnation points and shock waves. In
order to accelerate the computation, local time step
and multi-grid are implemented. For unsteady cases,
dual time-stepping is used to do the fully implicit time
marching.'0

IIT Simplified Boundary Conditions

For a wing with small deformation or movement,
the original wing and the new position are considered
as shown in Fig. 1. An arbitrary point Po(x0,y0,20)
on the original wing moves to a new position P(x,y,z).
For unsteady computation, the velocity boundary con-
dition at P should be

g-n=q;-n (8)

where qp is the velocity of the wing for unsteady cases
and n is the unit normal vector at P. Using Taylor
expansion, the flow variables at P can be represented
by those at Py:

0
q(z,y, z) = q(zo, Yo, 20) + a—g(woayo,zo)(w — o)

0
+6—(;(x0,y0,zo)(y—yo)

0
+52 (20,90, 0)(z = 20) + O(Ar?) (9)
If the deformation of the wing  sur-
face is small, which means that Ar =
V@ —20)2+ Yy —y)?+(z—20)?% < L For
first-order approximation, we have

q(x, y,z) = Q(Hfo,yo,zo) + O(AT) (10)
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Then equation (8) can be written as

Q(ﬂfoayo,zo) ‘n=qp-n (11)

We can transform the above equation to a local grid
coordinate system (£,n,(), and use the contravariant
velocity (U,V,W). The relation between (U,V,W)
and (u,v,w) is

u=zU+z,)V +2 W
v=yU +y,V+yW
w=2eU + 2,V + 2cW (12)

Substituting equation (12) to equation (11), we get the
following approximate wall boundary condition.

_ (upng + vpny + wpn.;)
B (mﬂnw + Ypny + zan)
U(zeng + yeny + zen)
(Zyne + ypny + 2¢nz)
W(zeng + yeny + z¢nz)

_ 13
(Zyng + ynny + 2¢nz) (13)

Notice in the above equation, although the flow ve-
locities are evaluated at the stationary position Py,
the normal vector n is evaluated at the actual point
P, which changes with time. In addition w,v, and
wy, the local body velocity components, are also time
dependent in an unsteady motion.

In the same way, we can deal with the normal mo-
mentum equation, which is used to compute the pres-
sure on the wall.

n (2 (g Vg =n- (-2

5t ; ) (14)

Since we are using first-order approximation in this
paper, we use the first-order extrapolation to get the
pressure on the wall from the first interior grid cells
for both accurate and simplified boundary condition
computations.

IV  Results
A NACAO0012 Unsteady Cases

Before we compute the aeroelastic cases, the pure
unsteady cases are computed in this section. The sim-
plified boundary condition method is implemented in
a three dimensional code and used to calculate the
flow over a NACA 0012 airfoil pitching around its
quarter-chord point. Experimental data were provided
by Landon.!!

The instantaneous angle of attack of the airfoil is
described by the following equation.

a(t) = am + agsinwt (15)

where w and g are the angular frequency and the
amplitude of the pitching oscillation. The angular fre-
quency w is related to the reduced frequency defined
as

we

= ou.

The AGARD CT case 5 of Ref. 11 is studied to
validate the simplified boundary condition method.
The airfoil is an NACA 0012 pitching at the free
stream Mach number M, = 0.755, a,,, = 0.016°, a9 =
2.51°,k = 0.0814. The comparisons of the present in-
viscid computations with the experimental data of the
instantaneous lift and moment coefficients vs. the in-
stantaneous angle of attack are shown in Fig. 2. The
lift coefficients predicted with the simplified boundary
conditions are almost same as that predicted with ac-
curate boundary condition method. They approach
the experiment results at same level. But the moment
coefficient result from the simplified boundary condi-
tions is slightly worse than that with accurate bound-
ary condition method. In order to find the reason why
there are such differences for the coefficient, the first
three Fourier components of the unsteady surface pres-
sure distributions are shown in Fig. 3 and Fig. 4. Fig.
3 represents the real part of the pressure distribution
and Fig. 4 represents the imaginary part. In those
figures, the pressure from two different methods are al-
most same except the shock wave position. The shock
wave predicted by the simplified-boundary-condition
method is slightly downstream relative to that by
the accurate boundary-condition method. This agrees
with the findings for the two-dimensional cases in Ref.
7.

B AGARD 445.6 Wing

In this section, the simplified boundary condition
is used to predict the flutter boundary for the three-
dimensional AGARD 445.6 wing. The computational
results are compared with the results from accurate
boundary conditions and available experimental data.

The AGARD 445.6 wing is a semi-span model made
of the NACA 65A004 airfoil that has a quarter-chord
sweep angle of 45 degree, a panel aspect ratio of 1.65,
and a taper ratio of 0.66. We consider the weakened
wing model as listed in Ref. 12. It was tested in the
Transonic Dynamic Tunnel at NASA Langley Center.
Details of the wing could be found in Ref. 12. In order
to compute the flutter boundary, different values of
speed index V; are tested. V; is defined as

U
Vi = _—x
bw./1
Figures 5, 6, and 7 represent the comparison of the
generalized displacements of the first mode between

(16)

(17)
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Fig. 2 Comparison of lift and moment coeffi-
cients between present computation and exper-
iment, NACA 0012, M. = 0.755, a, = 0.016°,
ao = 2.51°, kK = 0.0814.

the solution with the accurate boundary conditions
and that with simplified boundary conditions at Mach
number 0.96 stable, the neutrally stable, and unstable
case respectively. In these figures, the results from the
simplified-boundary-condition method coincide with
those with the accurate boundary-condition method.

Finally, the comparison of the flutter boundary is
shown in Fig. 8. The computation result predicted
by the simplified boundary conditions is compared
with computation result by the accurate-boundary-
condition method and the experiment result.'® Both
the simplified-boundary-condition method and the
accurate-boundary-condition method predict the tran-
sonic dip and their results approach the experimental
results in subsonic and transonic Mach number range.
They departure from the experiment results in super-
sonic range.
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Fig. 3 Comparison of computational surface pres-
sure distribution of NACA 0012 with experimental
data, M., = 0.755, a,, = 0.016°, ap = 2.51°, k = 0.0814
(Real part) .
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Fig. 4 Comparison of computational surface pres-
sure distribution of NACAQ0012 with experimental
data, M., = 0.755, a,, = 0.016°, ap = 2.51°, k = 0.0814
(Imaginary part).
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Fig. 5 Time history of the generalized displace-
ment of the first mode for AGARD 445.6 wing
model for M, =0.960, V; =0.25(Stable case).
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Fig. 6 Time history of the generalized displace-
ment of the first mode for AGARD 445.6 wing
model for M, =0.960, V; =0.26(Neutral case).

V  Summary and Conclusion

A small-perturbation-boundary-condition method
is extended to three dimensions and used for air-
foil and wing unsteady/flutter computations. The
CFD solver with the small-perturbation-boundary-
condition is coupled with the elastic equations to pre-
dict the aeroelastic properties of the AGARD wing.
During the unsteady/aeroelastic computation process,
the accurate nonlinear Euler equations are solved in
the flow field, while the movement and deformation of
the solid wall is accounted for in the new approximate
boundary conditions without moving or deforming the
computational grids. The first-order simplified bound-
ary conditions are used in solving the full Euler equa-
tions for unsteady two dimensional and three dimen-
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Fig. 7 Time history of the generalized displace-
ment of the first mode for AGARD 445.6 wing
model for M,=0.960, V; =0.27(Unstable case ).
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Fig. 8 Comparison the flutter boundary of
AGARD 445.6 Wing.

sional aeroelastic cases. The results are compared with
Euler solutions with the full boundary conditions on
moving grids and known experimental data. The com-
parison shows that the simplified-boundary-condition
method is accurate enough for unsteady cases and flut-
ter cases where the perturbations are small.
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